Carbon-Enhanced VRLA Batteries

October 20th, 2011

David G. Enos, Summer R. Ferreira, Wes E. Baca Sandia National Laboratories

Rod Shane
East Penn Manufacturing

The Advanced VRLA Battery

- Recently, there are several manners in which carbon has been added to a Pb-Acid battery
 - ➤ The work presented here deals with the Advanced Battery, where carbon has been added to the negative active material

Why add excess carbon to the NAM?

 Carbon additions to the negative active material (NAM) can substantially reduce hard sulfation

➤ Fernandez, 2010*

Research Goals

- The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.
 - What reactions/changes take place on the surface of the carbon particles?
 - What processes govern the increase and then eventual decrease in capacity with increasing # of cycles?
 - ➤ Are the kinetics of the charge/discharge process different when carbon is present vs. when it is not?
 - ➤ Why are some carbons effective additions while others are not? Are there any distinguishing characteristics of effective additions? Is the effectiveness controlled by aspects of the plate production method? etc.

Constituent Material Analysis

 Given the limited understanding of what characteristics yield an effective carbon addition, a broad spectrum approach is being taken to quantify the carbon particle properties.

	Carbon Black	Graphite	Actetylene Black	Activated Carbon
Particle size	20 nm	20+ μm	20 nm	100+ μm
Effective surface area (BET)	75 m²/g	6 m²/g	75 m²/g	>2000 m ² /g
Structure (XRD)	Semicrystalline	Crystalline	Semicrystalline	Amorphous
Acid Soluble Contamination	Clean	Clean	Very Clean	Na, PO ₄

Performance Testing Shows Some Differentiation between Control and Carbon Modified Batteries

Performance Testing Shows Similarities Between Control and Carbon Modified Batteries

More Dramatic Differentiation Observed as the Batteries are Cycled

- Comparable behavior observed for all four battery types at 1k cycles
- At 10k cycles, capacity loss was evident in the control, acetylene black, and activated carbon batteries (but not in the carbon black + graphite cell)
- Control battery failed at 11,292 cycles
 - ➤ Failure defined as a capacity loss of greater than 20% after three discharge/charge cycles in an attempt to recover.

Porosity and Pore Size Distribution

Porosity and Pore Size Distribution

Minimal Sulfation at 1k Cycles

Significant Sulfation at 10k Cycles for Two of the Batteries

Control

Acetylene Black

Activated Carbon

Carbon Black + Graphite

Summary/Conclusions to Date

- Battery performance
 - ➤ Pb-C batteries had lower initial capacity, higher initial internal resistance, higher float current, comparable HPPC performance, and superior HRPSoC cycling performance

- Material Characterization
 - Pore structure in Pb-C batteries notably smaller (order of magnitude), but comparable in overall volume
 - ➤ Hard sulfation becoming significant after 10k cycles with the control battery and activated carbon battery

Future Tasks

- Cycle testing will continue
 - > 50k and 100k cycles
 - > Cycle to end of life
 - > Analysis of cycled battery materials
- Program will conclude in August 2012

